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SUPPLEMENTARY METHODS 

Immunohistochemistry 

The immunohistochemical profile of the invasive lesions was assessed on 4μm-thick sections, using 

antibodies against estrogen receptor (ER), progesterone receptor (PR) and HER2 as previously 

described (1). Positive and negative controls were included in each slide run. The results of ER, PR 

and HER2 immunohistochemistry were evaluated according to the American Society of Clinical 

Oncology/ College of American Pathologists guidelines (2, 3).  

 

Histologic grading 

Mitotic index was prospectively assessed in the centralized pathologic reviewer as part of the main 

ESOPE study. In addition, histologic review of tubule formation and nuclear pleomorphism was 

performed by two pathologists with experience and expertise in breast cancer pathology to determine 

histologic grade according to the Nottingham grading system (4). 

 
 
Microdissection and DNA extraction 

For all tumor biopsies, 15 eight-µm-thick representative histologic sections of the flash frozen and 

formalin-fixed paraffin-embedded (FFPE) biopsies of the primary breast cancers and metastases 

were subjected to microdissection with a needle under a stereomicroscope (Olympus SZ61), to 

ensure >70% of tumor cell content as previously described (5). Genomic DNA was extracted from 

each tumor and matched peripheral blood (germline) using the DNeasy Blood and Tissue Kit (Qiagen) 

and quantified using the Qubit Fluorometer assay (Life Technologies) as previously described (6). 

 
Whole-exome massively parallel sequencing of flash frozen biopsies 

Previous sequencing analysis of patient 5 was reported elsewhere (7); independent analyses of the 

sequencing data and additional genetic analyses of the materials from this patient are reported in the 

present study. DNA extracted from flash frozen biopsies of the primary breast cancers, metastases 

and peripheral blood were subjected to whole-exome capture using the SureSelect Human All Exon 

v4 (Agilent) capture system and to massively parallel sequencing on an Illumina HiSeq 2000 at the 
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Memorial Sloan Kettering Cancer Center Integrated Genomics Operation (MSKCC IGO) fol lowing 

validated protocols (8-10). An average of 385, 359 and 397 million 75-bp paired-end reads were 

generated from DNA extracted from primary breast cancers, distant metastases and peripheral blood, 

respectively, equivalent to median depths of 202x (primary breast cancers, range 189x-229x), 207x 

(metastasis, range 124x-277x) and 208x (germline, range 58x-267x; Supplementary Table S2). 

Exome sequencing data have been deposited in the Sequence Read Archive under the accession 

SRP055001. 

 

Whole-exome sequencing data processing was performed as described in Weinreb et al. (6). In brief, 

paired-end reads in FASTQ format were aligned to the reference human genome GRCh37 using 

Burrows-Wheeler Aligner (v0.7.5a) (11). Local realignment was performed using the Genome 

Analysis Toolkit (GATK, v2.7.4) (12). PCR duplicates were removed using Picard (v1.92, 

http://broadinstitute.github.io/picard/). Base quality adjustment was performed using GATK (v2.7.4) 

(12). Somatic single nucleotide variants (SNVs) were identified using MuTect (v1.0) (13) and somatic 

small insertions and deletions (indels) were identified using GATK (v2.7.4) (12) and the micro-

assembly-based Scalpel (v0.1.1) (14). All indels were manually inspected using the Integrative 

Genomics Viewer (15). Variants found with >5% global minor allele frequency in dbSNP (Build 137) 

or that were covered by <10 reads in the tumor or <5 reads in the germline were disregarded. Variants 

for which the tumor variant allele fraction was <5 times than that of the normal variant allele fraction 

were disregarded. 

 

Validation of mutations in flash frozen samples and discovery in FFPE samples 

Orthogonal validation of mutations found by whole-exome sequencing in the flash frozen samples 

and mutation discovery in the FFPE samples were performed by either targeted capture massively 

parallel sequencing using a customized set of baits (EzCap, Nimblegen, Roche) on an Illumina HiSeq 

2000 or amplicon sequencing using a custom AmpliSeq panel on an Ion Torrent Personal Genome 

Machine (PGM) as follows. 
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Targeted capture sequencing was performed with DNA extracted from the available flash frozen and 

FFPE tissues and the peripheral blood from cases 1, 4-9, using a custom Nimblegen EzCap bait set 

targeting all somatic mutations found by exome sequencing in any flash frozen lesion in these seven 

patients (Supplementary Table S3), on an Illumina HiSeq 2000 at the MSKCC IGO following 

validated protocols (8, 9). Sequencing was performed to a median depth of 493x (range 157x-1,324x) 

and 312x (range 236x-939x) for the tumors and germline, respectively (Supplementary Table S2). 

Paired-end reads in FASTQ format were aligned to the reference human genome GRCh37 using the 

Burrows-Wheeler Aligner (v0.7.5a) (11). Local realignment was performed using GATK (v2.7.4) (12). 

PCR duplicates were removed using Picard (v1.92, http://broadinstitute.github.io/picard/).  

 

Amplicon sequencing was performed with DNA extracted from the available flash frozen and FFPE 

tissues and peripheral blood from all nine patients using a custom AmpliSeq panel targeting all 

mutations that could not be validated by targeted capture sequencing for seven patients described 

above, as well as all somatic mutations identified from exome sequencing of the flash frozen tissues 

of patients 2 and 3, at the MSKCC IGO (Supplementary Tables S2 and S3). Sequencing was 

performed to a median depth of 670x (range 265x-2,408x) and 1054x (range 690x-2,457x) for the 

tumors and germline, respectively (Supplementary Table S2). Paired-end reads in FASTQ format 

were aligned to the reference human genome GRCh37 using the Torrent Mapping Alignment Program 

(v3.4.1, https://github.com/iontorrent/TS/tree/master/Analysis/TMAP). Local realignment was 

performed using GATK (v3.1.1) (12).  

 

Validation of mutations in the flash frozen samples and discovery of mutations in the FFPE samples 

were performed using the validation mode of VarScan2 (16) (v2.3.5) and using Scalpel (14) (v0.1.1). 

Mutations found to be germline variants were excluded from further analysis. Non-germline variants 

called “Somatic” by VarScan2 or scalpel were considered validated (in the flash frozen tissues) or 

present (in the FFPE tissues). The median validation rate was 94% (range 47%-99%, with all except 

one sample above 88%) and the median false negative rate (i.e. not found by whole-exome 

sequencing but subsequently found to be somatic by targeted capture and/or amplicon sequencing 
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to be present and somatic) was 1% (range 0%-17%, with all but one sample below 6%, 

Supplementary Table S2). Owing to insufficient DNA, orthogonal validation was not performed for 

the flash frozen sample of the liver metastasis of patient 5 and for the flash frozen sample of the 

primary tumor of patient 3. For these two samples, mutations found by whole-exome sequencing that 

were validated by targeted or amplicon sequencing in at least one related flash frozen or FFPE 

samples were considered validated. Sufficient DNA could not be obtained from the FFPE biopsy of 

the primary tumor of patient 5, the FFPE biopsy of the primary tumor of patient 7 and the flash frozen 

biopsy of the metastasis for patient 8 for the AmpliSeq panel, resulting in a small number of mutations 

considered “not tested”, which are indicated as such in figures. In addition, non-germline variants 

were considered present by interrogation if they were supported by at least three reads by either 

targeted capture sequencing or PGM sequencing. Only validated somatic mutations were taken 

forward for further analysis. 

 

Gene copy number profiling 

For the flash frozen biopsies subjected to whole-exome sequencing, FACETS (17) was used to define 

copy number alterations (CNAs). Specifically, read counts for positions within the target regions with 

dbSNP entries (build 137) were generated for matched tumor and normal counterpart, and used as 

input to FACETS, which performs a joint segmentation of the total and allelic copy ratio and infers 

allele-specific copy number states. DNA extracted from available materials from microdissected FFPE 

biopsies of the primary breast tumors and metastasis were subjected to copy number profiling 

analysis using the OncoScan v3 molecular inversion probe array (Affymetrix) following manufacturer’s 

instructions (Supplementary Table S2). OncoScan arrays were processed using the OncoScan 

console. Exported OSCHP files were imported into the Nexus Express for OncoScan software 

(BioDiscovery, http://www.biodiscovery.com/nexus-express-for-oncoscan/) and processed using the 

TuScan algorithm within the Nexus Express software.  

 

Segmented Log2 ratio from FACETS (whole-exome sequencing) and Nexus Express for OncoScan 

(OncoScan arrays) were used as input for ABSOLUTE (v1.0.6, see also below) (18) to determine 
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integer copy number and cancer cell fractions (CCFs) of CNAs (19). In brief, ABSOLUTE estimates 

sample purity, ploidy and absolute copy number by fitting Gaussian mixture models over discrete 

copy number states over a range of purity and ploidy. After taking into account of the likelihood of the 

observed karyotype (using data from cytogenetic characterization of human cancer (18)), a set of 

solutions with maximum likelihood was defined. For the flash frozen biopsies of each patient, minimum 

and maximum ploidy was set to +/- 1 of the average ploidy estimate by FACETS. The top 3 

ABSOLUTE models were retrieved and the pair of solutions with the minimum pairwise distance 

between their modal copy number estimates was selected. Similarly, for OncoScan arrays, patient-

specific minimum and maximum ploidy was set to +/- 1 of the average ploidy estimate by FACETS. 

For each sample, the top 10 ABSOLUTE solutions were retrieved and the solution with the minimum 

distance between its modal copy number estimates and the modal copy number estimate of the 

selected modals for the corresponding flash frozen biopsies (FACETS) was selected. Solutions from 

ABSOLUTE were manually reviewed as recommended to select a final solution (19). Based on the 

final solution and its associated mixture models over discrete copy number states, the probability of 

each CNA being subclonal was estimated (19). CNAs whose subclonal probability is ≥ 0.2 (based on 

the source code of ABSOLUTE, v1.06) were considered subclonal. Clonal CNAs were assigned CCF 

100% and the CCF of subclonal CNAs was computed based on its posterior distribution of CCF values 

(between 1% and 100%), given the Log2 ratio and sample purity. As the number of genomic 

configurations of absolute copy number and CCF increases exponentially with the number of absolute 

copy number and the tendency of over-fitting of CCFs for focal amplifications, CCF estimates for 

amplifications (defined below) were disregarded. CCFs for all other types of CNAs were retained. 

 

Gains and losses were defined relative to the average ploidy of all samples from a given patient using 

the modal copy number for each segment from ABSOLUTE. Segments with modal copy number 

greater than average ploidy+1 were considered gains, greater than average ploidy+3 amplifications, 

less than average ploidy-1 losses, modal copy number of 0 homozygous deletions. Copy number 

states were collapsed based on the median values to cytoband resolution based on the “Chromosome 

Band (Ideogram)” track from the University of California Santa Cruz Genome Browser 
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(http://genome.ucsc.edu/index.html). Regions of loss of heterozygosity were defined using FACETS 

(whole-exome sequencing) and Nexus Express for OncoScan software (OncoScan). For cases where 

both OncoScan and FACETS results were available (n=6), a substantial to perfect agreement for the 

CNA profiles was observed (median Cohen’s weighted kappa 0.85, range 0.76-0.88; Supplementary 

Fig. S1A and Supplementary Table S2) (20). 

 

Identification of likely pathogenic mutations 

A combination of MutationTaster (21), CHASM (breast) (22) and FATHMM (23) was used to define 

the potential functional effect of each missense SNV. Missense SNVs defined as non-deleterious/ 

passenger by both MutationTaster (21) and CHASM (breast) (22), a combination of mutation function 

predictors shown to have a high negative predictive value (20), were considered likely passenger 

alterations. The remaining missense SNVs were defined as likely pathogenic if they were predicted 

to be “driver” and/ or “cancer” by CHASM (breast classifier) and/ or FATHMM (23), respectively. In-

frame indels defined as “neutral” by MutationTaster (21) and PROVEAN (24) were defined as likely 

passengers. The remaining in-frame indels, as well as frameshift, splice-site and nonsense mutations 

were considered likely pathogenic if they were targeted by loss of the wild-type allele (i.e. LOH) or 

affected haploinsufficient genes (25). SNVs, including missense and nonsense SNVs, affecting 

hotspot residues (17) were also considered likely pathogenic. Mutations were also annotated if they 

affected genes included in the cancer gene lists described by Kandoth et al. (127 significantly mutated 

genes) (26), the Cancer Gene Census (27) or Lawrence et al. (Cancer5000-S gene set) (28). 

Mutations that were neither likely pathogenic nor likely passenger were considered of indeterminate 

pathogenicity. 

 

Classification of trunk and branch mutations, and mutations enriched in the primary or 

metastatic lesion 

The CCF of each validated mutation in the biopsies of the primary tumor or metastasis was inferred 

using the number of reads supporting the reference and the alternate alleles obtained from targeted 

capture or PGM sequencing (or exome sequencing if neither targeted capture or PGM was available) 

http://genome.ucsc.edu/index.html


8 

 

as secondary input to the copy number analysis using ABSOLUTE (18) (described above). A mutation 

was classified as clonal if its probability of being clonal was >50% (19) or if the lower bound of the 

95% confidence interval of its CCF was >90% (10). Mutations that were considered validated or 

present by interrogation but do not meet the above criteria were considered subclonal.  

 

A mutation was considered ‘trunk’ if it was found to be clonal in all available biopsies in any given 

patient. Mutations that were not clonal or were not present in all available biopsies in any given patient 

were considered ‘branch’. We defined mutations ‘specific to the metastatic lesion’ as those present in 

at least one biopsy of the metastatic lesion but absent from all biopsies of the primary tumor from the 

same patient and defined mutations ‘enriched in the metastatic lesion’ as those associated with an 

increase in CCF by at least 20% in the metastatic lesion compared to the primary tumor, and vice 

versa for mutations ‘specific to the primary tumor’ and mutations ‘enriched in the primary tumor’. 

 

Analysis of pathways associated with the metastatic process 

To identify pathways that may be associated with the metastatic process, we performed pathway 

analysis on genes affected by likely pathogenic mutations specific to, enriched in the metastatic lesion 

(see above) and those associated with the loss of the wild-type allele in at least one biopsy of a 

metastatic lesion and not associated with the loss of the wild-type allele in any biopsy of the matched 

primary tumor using the Ingenuity Pathway Analysis software (http://www.ingenuity.com) and 

g:Profiler (29). For the Ingenuity Pathway Analysis, genes were mapped to canonical pathways; P-

values ≤ 0.05 were considered significant. For g:Profiler (29), genes were mapped to KEGG and 

Reactome pathways; P-values ≤ 0.05 after correction using the g:Profiler native method g:SCS were 

considered significant. 

 

To further enrich for genes associated with the metastatic process, we excluded the genes mutated 

in >1% of primary invasive breast cancers in the TCGA cohort (30). TCGA invasive breast cancers 

and their mutations were retrieved from the "Final Full BRCA Sample Summary" and "Mutations - 

Publicly accessible MAF archives" at https://tcga-data.nci.nih.gov/docs/publications/brca_2012/, 

http://www.ingenuity.com/
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including all non-silent mutations for 463 primary invasive breast cancers, excluding all metastatic 

lesions. Genes that were targeted by non-silent mutations in >1% of the 463 primary tumors were 

excluded from the pathway analysis. 

 

Mutational signatures 

To define the evolution of mutational signatures, we measured the mutational context of synonymous 

and non-synonymous trunk SNVs, branch SNVs, SNVs enriched in the primary tumor and SNVs 

enriched in the metastatic lesion in a given patient, as previously described (10). Mutation sets with 

fewer than five mutations were excluded. For a given set of SNVs, we classified its dominant 

mutational signature based on its Pearson’s correlation coefficient to the 12 established breast 

cancer-associated mutational signatures (9, 31). A 1,000-fold bootstrap was performed and 

assignment to a given mutational signature was based on the number of iterations with the highest 

Pearson correlation coefficient (10).  

 

Phylogenetic tree construction  

A maximum parsimony tree was built for each case using binary presence/ absence matrices based 

on the repertoire of non-synonymous and synonymous somatic mutations, gene amplifications and 

homozygous deletions in the biopsies of the primary tumor and the metastatic lesion, as described 

by Murugaesu et al. (32). A starting tree was constructed using the Neighbor-joining method and 

Hamming distance and optimized using the parsimony ratchet method (33) implemented in the R 

package Phangorn (34). Trees were rooted at the hypothetical normal where all somatic alterations 

are absent. Branch lengths were determined according to the ACCTRAN criterion as implemented in 

the Phangorn package and were drawn to scale. 
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